KATP Channel Mutations and Neonatal Diabetes

نویسندگان

  • Kenju Shimomura
  • Yuko Maejima
چکیده

Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological functions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the KATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the KATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the KATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perspectives in Diabetes Diabetes and Insulin Secretion The ATP-Sensitive K Channel (KATP) Connection

The ATP-sensitive K channel (KATP channel) senses metabolic changes in the pancreatic -cell, thereby coupling metabolism to electrical activity and ultimately to insulin secretion. When KATP channels open, -cells hyperpolarize and insulin secretion is suppressed. The prediction that KATP channel “overactivity” should cause a diabetic state due to undersecretion of insulin has been dramatically ...

متن کامل

Neonatal Diabetes and the KATP Channel: From Mutation to Therapy

Activating mutations in one of the two subunits of the ATP-sensitive potassium (KATP) channel cause neonatal diabetes (ND). This may be either transient or permanent and, in approximately 20% of patients, is associated with neurodevelopmental delay. In most patients, switching from insulin to oral sulfonylurea therapy improves glycemic control and ameliorates some of the neurological disabiliti...

متن کامل

A diagnosis of monogenic neonatal diabetes can improve treatment

changes in the diagnosis and treatment of diabetes presenting in the first 6 months of life. It is now known that this form of diabetes, which develops in the neonatal period, is often caused by a change in a single gene (monogenic) and is not type 1 diabetes (Slingerland and Hattersley, 2005; Edghill et al, 2006). These major changes have resulted from the identification of neonatal diabetes a...

متن کامل

Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel fu...

متن کامل

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium (KATP) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2017